NONMEM Users Network Archive

Hosted by Cognigen

RE: Negative concentration from simulation

From: Nick Holford <n.holford>
Date: Tue, 2 Jun 2020 19:46:09 +0000

Hi Nyein,

For drug concentrations the additive error model assumes that the background noise is random with mean zero when the drug concentration is truly zero. In the real world there is always background noise for measurements which means that real measurements can appear to be a negative concentration even though the true concentration is zero. Simulations that simulate negative concentrations are therefore more realistic than those that ignore reality and are reported as censored measurement values.

The honest thing to do is to report measurements as they are. The dishonest thing is to report real measurements as below some arbitrary limit of quantification. There are numerous papers which describe the bias arising from dishonest reporting of real measurements and work arounds if you have to deal with this kind of scientific fraud e.g.

Beal SL. Ways to fit a PK model with some data below the quantification limit. Journal of Pharmacokinetics & Pharmacodynamics. 2001;28(5):481-504.
Duval V, Karlsson MO. Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharm Res. 2002;19(12):1835-40.
Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35(4):401-21.
Byon W, Fletcher CV, Brundage RC. Impact of censoring data below an arbitrary quantification limit on structural model misspecification. J Pharmacokinet Pharmacodyn. 2008;35(1):101-16.
Senn S, Holford N, Hockey H. The ghosts of departed quantities: approaches to dealing with observations below the limit of quantitation. Stat Med. 2012;31(30):4280-95.
Keizer RJ, Jansen RS, Rosing H, Thijssen B, Beijnen JH, Schellens JHM, et al. Incorporation of concentration data below the limit of quantification in population pharmacokinetic analyses. Pharmacology research & perspectives. 2015;3(2):10.1002/prp2.131

Best wishes,

Nick Holford, Professor Clinical Pharmacology
Dept Pharmacology & Clinical Pharmacology, Bldg 503 Room 302A
University of Auckland,85 Park Rd,Private Bag 92019,Auckland,New Zealand
office:+64(9)923-6730 mobile:NZ+64(21)46 23 53 FR+33(6)62 32 46 72
Read the question, answer the question, attempt all questions

-----Original Message-----
From: owner-nmusers m <> On Behalf Of Bill Denney
Sent: Tuesday, 2 June 2020 8:30 PM
To: Nyein Hsu Maung <>;
Subject: RE: [NMusers] Negative concentration from simulation

Hi Nyein,

Negative concentrations can be expected from simulations if the model includes additive residual error. I assume that you mean additive and proportional error when you say "combined error model". If the error structure does not include additive error, then we'd need to know more.

How you will handle them in analysis depends on the goals of the analysis.
Usually, you will either simply set negative values to zero or set all values below the limit of quantification to zero.



-----Original Message-----
From: <> On Behalf Of Nyein Hsu Maung
Sent: Tuesday, June 2, 2020 2:13 PM
To: nmusers
Subject: [NMusers] Negative concentration from simulation

Dear NONMEM users,
I tried to simulate a new dataset by using a previously published pop pk model. Their model was described by combined error model for residual variability. And after simulation, I have obtained two negative concentrations. I would like to know if there is any proper way to handle those negative concentrations or if there are some codings to prevent gaining negative concentrations. Thanks.

Best regards,
Nyein Hsu Maung

Received on Tue Jun 02 2020 - 15:46:09 EDT

The NONMEM Users Network is maintained by ICON plc. Requests to subscribe to the network should be sent to:

Once subscribed, you may contribute to the discussion by emailing: